Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present new high-spectral-resolution observations (R=λ/Δλ= 7000) of the filamentary nebula surrounding NGC 1275, the central galaxy of the Perseus cluster. These observations have been obtained with SITELLE, an imaging Fourier transform spectrometer installed on the Canada–France–Hawai Telescope with a field of view of , encapsulating the entire filamentary structure of ionized gas despite its large size of 80 kpc × 50 kpc. Here, we present renewed fluxes, velocities, and velocity dispersion maps that show in great detail the kinematics of the optical nebula at [Sii]λ6716, [Sii]λ6731, [Nii]λ6584, Hα(6563 Å), and [Nii]λ6548. These maps reveal the existence of a bright flattened disk-shaped structure in the core extending tor∼10 kpc and dominated by a chaotic velocity field. This structure is located in the wake of X-ray cavities and characterized by a high mean velocity dispersion of 134 km s−1. The disk-shaped structure is surrounded by an extended array of filaments spread out tor∼ 50 kpc that are 10 times fainter in flux, remarkably quiescent, and have a uniform mean velocity dispersion of 44 km s−1. This stability is puzzling given that the cluster core exhibits several energetic phenomena. Based on these results, we argue that there are two mechanisms that form multiphase gas in clusters of galaxies: a first triggered in the wake of X-ray cavities leading to more turbulent multiphase gas and a second, distinct mechanism, that is gentle and leads to large-scale multiphase gas spreading throughout the core.more » « less
-
Abstract The Voit et al. black hole feedback valve model predicts relationships between stellar velocity dispersion and atmospheric structure among massive early-type galaxies. In this work, we test that model using the Chandra archival sample of 49 early-type galaxies from Lakhchaura et al. We consider relationships between stellar velocity dispersion and entropy profile slope, multiphase gas extent, and the ratio of cooling time to freefall time. We also define subsamples based on data quality and entropy profile properties that clarify those relationships and enable more specific tests of the model predictions. We find that the atmospheric properties of early-type galaxies generally align with the predictions of the Voit et al. model, in that galaxies with a greater stellar velocity dispersion tend to have radial profiles of pressure, gas density, and entropy with steeper slopes and less extended multiphase gas. Quantitative agreement with the model predictions improves when the sample is restricted to have low central entropy and a stellar velocity dispersion of between 220 and 300 km s −1 .more » « less
-
ABSTRACT We present updated cosmological constraints from measurements of the gas mass fractions (fgas) of massive, dynamically relaxed galaxy clusters. Our new data set has greater leverage on models of dark energy, thanks to the addition of the Perseus cluster at low redshifts, two new clusters at redshifts z ≳ 1, and significantly longer observations of four clusters at 0.6 < z < 0.9. Our low-redshift (z < 0.16) fgas data, combined with the cosmic baryon fraction measured from the cosmic microwave background (CMB), imply a Hubble constant of h = 0.722 ± 0.067. Combining the full fgas data set with priors on the cosmic baryon density and the Hubble constant, we constrain the dark energy density to be ΩΛ = 0.865 ± 0.119 in non-flat Lambda cold dark matter (cosmological constant) models, and its equation of state to be $$w=-1.13_{-0.20}^{+0.17}$$ in flat, constant-w models, respectively 41 per cent and 29 per cent tighter than our previous work, and comparable to the best constraints available from other probes. Combining fgas, CMB, supernova, and baryon acoustic oscillation data, we also constrain models with global curvature and evolving dark energy. For the massive, relaxed clusters employed here, we find the scaling of fgas with mass to be consistent with a constant, with an intrinsic scatter that corresponds to just ∼3 per cent in distance.more » « less
An official website of the United States government
